Group-based trajectory modeling through fixed-effects modeling.
The fixed effects formula.
The mixture-specific effects formula. See lcmm::hlme for details.
The cluster membership formula for the multinomial logistic model. See lcmm::hlme for details.
The name of the time variable.
The name of the trajectory identifier variable. This replaces the subject argument of lcmm::hlme.
The number of clusters to fit. This replaces the ng argument of lcmm::hlme.
Alternative for the B argument of lcmm::hlme, for initializing the hlme fitting procedure.
This is only applicable for nClusters > 1.
Options:
"lme.random" (default): random initialization through a standard linear mixed model. Assigns a fitted standard linear mixed model enclosed in a call to random() to the B argument.
"lme", fits a standard linear mixed model and passes this to the B argument.
"gridsearch", a gridsearch is used with initialization from "lme.random", following the approach used by lcmm::gridsearch. To use this initalization, specify arguments gridsearch.maxiter (max number of iterations during search), gridsearch.rep (number of fits during search), and gridsearch.parallel (whether to enable parallel computation).
NULL or "default", the default lcmm::hlme input for B is used.
The argument is ignored if the B argument is specified, or nClusters = 1.
Arguments passed to lcmm::hlme. The following arguments are ignored: data, fixed, random, mixture, subject, classmb, returndata, ng, verbose, subset.
Proust-Lima C, Philipps V, Liquet B (2017). “Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm.” Journal of Statistical Software, 78(2), 1–56. doi:10.18637/jss.v078.i02 .
Proust-Lima C, Philipps V, Diakite A, Liquet B (2019). lcmm: Extended Mixed Models Using Latent Classes and Latent Processes. R package version: 1.8.1, https://cran.r-project.org/package=lcmm.
Other lcMethod implementations:
getArgumentDefaults(),
getArgumentExclusions(),
lcMethod-class,
lcMethodAkmedoids,
lcMethodCrimCV,
lcMethodDtwclust,
lcMethodFeature,
lcMethodFunFEM,
lcMethodFunction,
lcMethodGCKM,
lcMethodKML,
lcMethodLMKM,
lcMethodLcmmGMM,
lcMethodMclustLLPA,
lcMethodMixAK_GLMM,
lcMethodMixtoolsGMM,
lcMethodMixtoolsNPRM,
lcMethodRandom,
lcMethodStratify
data(latrendData)
if (rlang::is_installed("lcmm")) {
method <- lcMethodLcmmGBTM(
fixed = Y ~ Time,
mixture = ~ 1,
id = "Id",
time = "Time",
nClusters = 3
)
gbtm <- latrend(method, data = latrendData)
summary(gbtm)
method <- lcMethodLcmmGBTM(
fixed = Y ~ Time,
mixture = ~ Time,
id = "Id",
time = "Time",
nClusters = 3
)
}