R/methodLMKM.R
lcMethodLMKM.RdTwo-step clustering through linear regression modeling and k-means
A formula specifying the linear trajectory model.
The name of the time variable.
The name of the trajectory identification variable.
The number of clusters to estimate.
A function that computes the cluster center based on the original trajectories associated with the respective cluster.
By default, the mean is computed.
A function to standardize the output matrix of the representation step. By default, the output is shifted and rescaled to ensure zero mean and unit variance.
Arguments passed to stats::lm. The following external arguments are ignored: x, data, control, centers, trace.
Other lcMethod implementations:
getArgumentDefaults(),
getArgumentExclusions(),
lcMethod-class,
lcMethodAkmedoids,
lcMethodCrimCV,
lcMethodDtwclust,
lcMethodFeature,
lcMethodFunFEM,
lcMethodFunction,
lcMethodGCKM,
lcMethodKML,
lcMethodLcmmGBTM,
lcMethodLcmmGMM,
lcMethodMclustLLPA,
lcMethodMixAK_GLMM,
lcMethodMixtoolsGMM,
lcMethodMixtoolsNPRM,
lcMethodRandom,
lcMethodStratify