Apply k-fold cross validation for internal cluster validation. Creates k random subsets ("folds") from the data, estimating a model for each of the k-1 combined folds.
latrendCV(
method,
data,
folds = 10,
seed = NULL,
parallel = FALSE,
errorHandling = "stop",
envir = NULL,
verbose = getOption("latrend.verbose")
)An lcMethod object specifying the longitudinal cluster method to apply, or the name (as character) of the lcMethod subclass to instantiate.
A data.frame.
The number of folds. Ten folds by default.
The seed to use. Optional.
Whether to enable parallel evaluation. See latrend-parallel. Method evaluation and dataset transformation is done on the calling thread.
Whether to "stop" on an error, or to "remove' evaluations that raised an error.
The environment in which to evaluate the method arguments via compose().
If the data argument is of type call then this environment is also used to evaluate the data argument.
The level of verbosity. Either an object of class Verbose (see R.utils::Verbose for details),
a logical indicating whether to show basic computation information,
a numeric indicating the verbosity level (see R.utils::Verbose),
or one of c('info', 'fine', 'finest').
A lcModels object of containing the folds training models.
Other longitudinal cluster fit functions:
latrend(),
latrendBatch(),
latrendBoot(),
latrendRep()
Other validation methods:
createTestDataFold(),
createTestDataFolds(),
createTrainDataFolds(),
latrendBoot(),
lcModel-data-filters
data(latrendData)
method <- lcMethodLMKM(Y ~ Time, id = "Id", time = "Time")
if (require("caret")) {
model <- latrendCV(method, latrendData, folds = 5, seed = 1)
model <- latrendCV(method, subset(latrendData, Time < .5), folds = 5)
}